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ATMOSYS Air quality models

IFDM + OSPM
(Gaussian plumes + parameterizations)

CFD
(Reynolds average Navier-Stokes equations)

Domain size: Continental/ country size

Resolution: KM

Domain size: urban areas

Resolution: 10-100 meters

Domain size: neighborhood 

Resolution: 1-5 meters

RIO Model
(smart spatial interpolation)
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Computational Fluid dynamics modelGaussian plume model
Advection diffusion equation:

Navier Stokes equation:

Parameterizations:

• Stability, chemistry, building downwash, plume rise …

+ parameterizations: turbulence

Algebraic equation:
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Situations where CFD is best suited

Complex urban sites

Tunnel mouths

Industrial sites

Mitigation measures
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Topography Buildings
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Geometrical methodology

3D volumes
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Topography Buildings Emissions 3D Details Mesh

+ + + =
2D map

surface

2D map

3D volumes

2D map

3D Volumes

CAD

3D Volumes

Numerical domain

3D discretization of volumes

Geometrical methodology
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Numerical Solution

Velocity Field
Meteo data
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Advection-diffusion equation

Velocity Field

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

Meteo data

Numerical Solution
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Concentration field

Advection-diffusion equation

Velocity Field

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

Meteo data

Numerical Solution
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0deg.
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[…]
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360deg

1) Data base of simulations

2) Wind statistics

3) Annual means:

Annual average map

Data base

probability background

• Benchmark in the FAIRMODE CT4

3) Hourly outputs: 

Emission
ҧ𝐶(𝑥, 𝑦)

= ෍
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Closest to the data base

ҧ𝐶 𝑥, 𝑦 =
𝐶𝑡𝑟𝑎𝑓𝑓𝑖𝑐
∗ 𝜃𝑡=𝑡1 𝑈𝑟𝑒𝑓

𝑈𝑡=𝑡1
𝐸𝑡=𝑡1𝑇𝑓𝑎𝑐𝑡𝑜𝑟𝑅NO2/NOX

+ 𝐶𝑏𝑐𝑘

Time factor

Borgeuhout traffic stations

observations

model

Post processing methodology:
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Running:

• For a typical run there are about 10-20 million fluid elements

• Very expensive computationally: 

• The domain is spitted in several regions 

• Each region runs in parallel in a dedicated CPU

• Example: 128 [CPU] * 6 [hours] * 72 [wind sectors] ≈ 55000 cpu hours

Pre-processing

Post-processing

Ofpy manages all the process Interactive dashboard
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Applications: Complex tunnels (MER)
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Tunnel mouths:

Depressed road + screens Nonsymmetrical tunnel mouths

recirculation
recirculation

• good mitigation strategy • Accumulation on one side • Next talk: Tunnel model

Applications: Complex tunnels (MER)

Parametric/ optimization study
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Parametric/ optimization study

Tunnel mouths:

Tunnel openings:

Depressed road + screens Nonsymmetrical tunnel mouths

Proximity of buildingsTunnel openings

recirculation
recirculation

• good mitigation strategy • Accumulation on one side • Next talk: Tunnel model

• Remove pollutants from the tunnel. But create hot spots • accumulation at the facade

Parametric study

• Next talk: tunnel model

Applications: Complex tunnels (MER)
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Modeling of guided emissions

Modeling of Non-Guided emissions

Applications: Industrial sites
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Modeling of guided emissions

Modeling of Non-Guided emissions

Diffused emissions inference based on sensor networks Interactive dashboard

• Forecast analysis

• Scenario analysis

Impact of 3D features

Applications: Industrial sites
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Conclusion: 

1) CFD model is used to complement AtmoStreet by zooming into complex situations

Next talk by Stijn Vranckx

• Street canyons • tunnels

2) Use correction factors in AtmoStreet derived from CFD: 

• Industrial sites


