Computational Fluid Dynamics for Pollution dispersion

ATMOSYS workshop

Jorge Sousa*, Stijn Vranckx, Alessandro d'Aussilio

vito.be

ATMOSYS Air quality models

RIO Model (smart spatial interpolation)

Domain size: Continental/ country size Resolution: KM

7/07/2023 ©VITO – Not for distribution

ATMOSYS Air quality models

RIO Model (smart spatial interpolation)

Domain size: urban areas Resolution: 10-100 meters

7/07/2023 ©VITO – Not for distribution

ATMOSYS Air quality models

RIO Model (smart spatial interpolation)

Domain size: urban areas Resolution: 10-100 meters

> Domain size: neighborhood Resolution: 1-5 meters

7/07/2023 ©VITO – Not for distribution

Simple situation

Complex situation

Simple situation

Complex situation

Gaussian plume model

Algebraic equation:

$$C(x, y, z) = \frac{Q}{2\pi u \sigma_{yy} \sigma_{zz}} e^{-1/2(\frac{y^2}{\sigma_y^2} + \frac{(z-H)^2}{\sigma_z^2})}$$

Parameterizations:

• Stability, chemistry, building downwash, plume rise ...

Algebraic equation:

$$C(x, y, z) = \frac{Q}{2\pi u \sigma_{yy} \sigma_{zz}} e^{-1/2(\frac{y^2}{\sigma_y^2} + \frac{(Z-H)^2}{\sigma_z^2})}$$

Parameterizations:

• Stability, chemistry, building downwash, plume rise ...

2) u1 ≠u3

Complex situation

Navier Stokes equation:

 $\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = \rho g - \frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$ $\rho\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}\right) = \rho g - \frac{\partial p}{\partial y} + \mu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right)$ $\rho\left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}\right) = \rho g - \frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right)$ + parameterizations: turbulence

νπo.be

Situations where CFD is best suited

Complex urban sites

Tunnel mouths

Industrial sites

Mitigation measures

Geometrical methodology

Geometrical methodology

Topography

Geometrical methodology Topography **Buildings** Emissions **3D** Details 0 Krillinde purz Mingelijk terklerinde bregeng PVR 2.1m 07 0 2D map 2D mar 2D mar + 3D volumes 3D Volumes 3D Volumes surface

Geometrical methodology Topography Mesh **Buildings** Emissions 3D Details 0 Krillinde purz Mingelijk terklerinde bregeng PVR 2.1m 07 C Numerical domain 2D map 2D mar 2D mai 3D volumes 3D Volumes 3D Volumes surface 3D discretization of volumes

Numerical Solution

Numerical Solution

Numerical Solution Emissions Advection-diffusion equation Meteo data Velocity Field **Concentration field**

Post processing methodology:

1) Data base of simulations

2) Wind statistics

vito.be

Post processing methodology:

1) Data base of simulations

2) Wind statistics

vito.be

Post processing methodology:

1) Data base of simulations

2) Wind statistics

Running:

- For a typical run there are about 10-20 million fluid elements ٠
- Very expensive computationally: •
 - The domain is spitted in several regions •
 - Each region runs in parallel in a dedicated CPU ٠
 - Example: 128 [CPU] * 6 [hours] * 72 [wind sectors] ≈ 55000 cpu hours ullet

Applications

Applications: Complex tunnels (MER)

Applications: Complex tunnels (MER)

Tunnel mouths:

good mitigation strategy

Nonsymmetrical tunnel mouths

Accumulation on one side

Parametric/ optimization study

• Next talk: Tunnel model

Applications: Complex tunnels (MER)

Tunnel mouths:

good mitigation strategy

Nonsymmetrical tunnel mouths

Accumulation on one side

Parametric/ optimization study

• Next talk: Tunnel model

Tunnel openings:

• Remove pollutants from the tunnel. But create hot spots

Proximity of buildings

• accumulation at the facade

Parametric study

• Next talk: tunnel model

Modeling of guided emissions

Modeling of Non-Guided emissions

 Modeling of guided emissions
 Diffused emissions inference based on sensor networks

Modeling of Non-Guided emissions

Impact of 3D features

vito.be

Conclusion:

1) CFD model is used to complement AtmoStreet by zooming into complex situations

Street canyons

• Industrial sites

Conclusion:

1) CFD model is used to complement AtmoStreet by zooming into complex situations

Height

• tunnels

Street canyons

Industrial sites

vito.be

2) Use correction factors in AtmoStreet derived from CFD:

 $C_0 - C_{NB}$ C_0 mean 0.8 STD: 4 tunnel directions MEAN: 4 tunnel direction: 0.6 V=1m/s Next talk by Stijn Vranckx V=3m/s V⊂7m/s 0.4 0.2 0 10 8 2 Δ 6

